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S P A C E  W A V E S  O N  T H E  S O U R C E  OF A F I L M  F L O W I N G  

D O W N  T H E  S U R F A C E  O F  A V E R T I C A L  C Y L I N D E R *  

O. Yu. Tsvelodub UDC 532.51 

We consider the flow of a film of viscous fluid on the outside surface of a cylinder of radius R. The Navier-Stokes 
solutions with film thickness ho = const are solved for any fluid flow rate. Such a flow is known to be unstable against 
infinitesimal perturbations, even for very small Reynolds numbers. Perturbations on the surface of a cylindrical film have been 

studied in a number of papers (axisymmetric perturbations, as a rule). 
Nonlinear interaction between waves of different modes can result in the formation of steady-state traveling-wave 

modes. Here we consider such nonlinear space waves. A particular class of space-wave modes (helical waves) was studied in 

[1], where we derived the corresponding model equation. That equation will be described briefly here. 
Let us consider the case of large cylinders, for which 6 = Ho/R << 1. For low flow rates the solution can be sought 

in the form of a series in the small parameter ho/L << 1 (L is the characteristic perturbation length). Then all of the quantities 
can be represented.by polynomials in the transverse coordinate with coefficients that depend only on the film thickness h and 
its derivatives. Then, using the kinematic condition for a free surface, we can obtain one equation for the film thickness h. If 

only terms of order up to and including t 2 are considered, that equation is 

O"~ + e "~r h2h~: + e2 S ~r  - 3  h= + Fr [.6 hth= - h ~ t h 4  - 

0, 

where the subscript of h denotes differentiation with respect to the corresponding variable, A -- 02/OX x + S 2 02/0~2; e = 

holL; S = L/R; Re = hoVo/v is the Reynolds number, Fr = Vo2/gho is the Froude number, We = a/pgho 2 is the Weber 
number, v is the viscosity, g is the free fail acceleration, a is the surface tension, p is the density of the fluid, and Vo is the 

characteristic velocity when a film of thickness h flows in the waveless mode. 
As shown in [1], if the wavelength L of neutral axisymmetric perturbations is taken to be the characteristic longitudinal 

scale of length and the velocity V o on the free surface in the waveless mode of flow is taken to be the characteristic velocity, 

then for the parameter S we have 

S -- L / R  = 1/(1 + 0,8 Re/We62) 1/2 < 1. 

In deriving Eq. (1) from the complete system of Navier-Stokes equations we used the assumptions that 

ho/R < 1, e = ho/L < 1, 

Re = Voho /v  <x 1, We = a/pgh2o :~, 1, Wet ~ ~, 1. 
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Henceforth the discussion is confined to weakly nonlinear perturbations and the function h is written as 

[1] 

h = l + e h l .  

Using the method of different time scales and leaving on the main orders in (1), after some transformations we obtain 

0tt  011 0211 -4 0211 ( O~ S s ~s ~ 2 
o,- + 4a-6-s + ~ ~+ "~ ~ + ~ + o,p2 ) 11 = o. (2) 

Equation (2) has been written in a system that moves with velocity of infinitesimal neutral axisymmetric perturbations. 

This equation was evidently first obtained in [2]. Other combinations of characteristic quantities were used in the 
transformations there, it is true, and ultimately a different variable parameter appears in the equation (in second place) instead 

of S. 
Investigation of perturbations in a f'tlm flowing down the surface of a vertical cylinder within the limitations used here 

reduces to analysis of the solutions of Eq. (2). 
In the case of axisymmetric solutions (H = H (z, X)) this equation goes over into a well known equation, often called 

the Kuramoto-Sivashinskii  equation: 

0tt 0tt 0211 0411 
l- 411 ~--~ + + = 0 .  

If the nonlinear term in (2) is ignored, then it follows from the linearized equation that the trivial solution H = 0 is 
unstable against perturbations of  the form 

exp ( i a ( X  - a t )  + in~)  (3) 

with the components of the wave vector (~, n), which satisfy the inequality 

a 2 + S4n  2 - ( a  s + S2nS)  s > 0, (4) 

where n and ~ are natural and real numbers, and c = cr + ici is the complex phase velocity of  the perturbations. 
The range of the perturbations (q < 0) is determined by the inequality of the opposite sign ( < )  instead of (4). 

Accordingly, the wave numbers of  neutral perturbations should satisfy 

ot 2 + S4n 2 - (or s + S2nS) 2 = 0. (5) 

Solving Eq. (5) for ~ ,  we obtain 

as1,2 = { 1  - 2 S 2 n  s 4- (1 - 4S~nS(1 _ S s ) ) l l s } [ 2 .  (6) 

As is seen from (6), neutral perturbations with a given azimuthal number n (n >_ 1) exists for values of S that satisfy 

S ~ S.(n)  = { [ n -  ( . s  _ 1) l / s ] /2 . } l / s .  (7) 

For the values of  S and n given in (7) the range of unstable wave numbers c~ lies inside the interval (~1, ~ ) -  The 

general case is when that interval is finite. When the roots become close to each other, which occurs as S ~ S.(n), we have 
a special case. In those cases the exponential growth of perturbations of the type (3) ceases as a result of  nonlinear effects and 
nonlinear steady-state space-wave modes can arise. 

For S > S.(n) all perturbations of the type (3) are stable. For those values of S and n, therefore, space-wave modes 
with a finite amplitude cannot arise from tile trivial mode H = 0 as a result of a nonlinear evolution of infinitesimal 
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perturbations; although it cannot be ruled out that such modes can form when axisymmetric waves of finite amplitude lose 

stability and then evolve nonlinearly. 
We look for a solution for (1) in the form 

~ ( ~ ,  ~o), ~ = x - or. (8) 

The following synlmetry condition holds for the solutions (8): 

H(~, ~) = n(,~, -~o). (9) 

In accordance with the linear theory of stability, in the plane (or, n) space-wave periodic solutions of the type (9), which 
have an infinitesimal amplitude, branch off from the trivial solution at neutral points given by Eq. (5). They can be written 

a s  

/ / =  I' exp ia X{exp i n ~ + exp [ - i  n~o]} + c.c., (10) 

where c. c. is a complex-conjugate expression. 
Solutions for small but finite amplitudes exist in the neighborhood of the neutral points (6). Let us consider weakly 

nonlinear motions that perturb the free surface only slightly. Our goal is to construct periodic solutions of Eq. (2), which vary 
slowly with time, ~is O(e -m) (the value of m is determined later). 

The solutions are written as a series in the small parameter: 

H = e I I o  + e2H1 + eaH2 + . . .  (11) 

Here, the order of the amplitude of the first harmonic of (10) can serve at the parameter e. 

We introduce a set of fast and slow variables 

zn = enX,  tn = en'r, n = O , 1 , 2 , . . .  

Then the differentiation operations in (2) have the form 

o o o 
= ato +~aiT + " ' "  O---~ 

o o o 
o--~ = a~o + ~ ~ + ' " '  
a' o 2 a,  , a 2  a 2 

= ~ ~-~x~ . - I - 2 ~  . . ,  + 2 ~ a~a=o + ~ a=2axo) + "  OX a 

o= . s2 m ~2= o' o' + 

2 O4 
a oa:~z 4Bxa-"~OXo ~ + 4S2 2~ + " "  +e  

Oz2OzoO~ ) 

(12) 

Since Eq. (2) has been written in a reference frame that moves with the velocity of infinitesimal perturbations, we consider 

solutions for which the functions H, in (11) depend on xo periodically with a spatial period of 2a-/o~ and do not depend on t o. 
Substituting the series (II) into (2) and collecting terms with the same powers of e, with allowance for (12), we have 

an infinite system of linear inhomogeneous equations for different orders of e. 
The equation that corresponds to the first order in that system is 

aRo a2~o ,a'~o a 2 _m.~2Bo 0. + s  +s2o  , = (13) 
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As already mentioned, in the general case for given components of the wave vector (a, n) its solution is represented 

by various sums, consisting of terms of the form (3). On substituting the solution of the type (10) that we need, we have 

o r  
- a e i r  = 0, (14) 

Oto 

where o~c i = ot 2 + S 4 n  2 - (or 2 + $2n2)2; and c i is the imaginary part of the complex phase velocity c. 

The second term in (14) should be fairly small if F is to be assumed to be independent of to. We assume that 

aciI" ~ e 2. (15) 

The second term in (14), therefore, should be carried over to a third-order equation. Equation (15) is valid if the wave numbers 

are close to the neutral values (6). 
Corresponding to the second order in ~ is the equation 

O-qo 0no o2,q~ ,02H, 902,qo o 2 0_~)~ 
o -7 + + + s + - + + s 2 

(16) 
4 04 04 

+ (0=-~=~ + s20=o0=~0~2) ~o = o. 

The condition for (16) not to have secular terms is given by 

0I '  82 o r  
Or----1 + 2 i a[1  - 2 ( a  2 + n2)] ~ z l  = 0. (17) 

When the validity of (17) is taken into account, we obtain/-/1 from (16), 

H1 = r l  exp 2iot xo {exp 2 i n  ~o + exp [ - 2 i n  ~o]} + c.e., 

F1 = - { i  a / [4 (a  2 + $2n2) 2 - a 2 - S4n2]}F 2. (18) 

If periodic solutions of finite amplitude with weak modulation at times of the order of O(e -z) are to exist we must 

require that F be independent of t V 

o r  
- -  = 0. (19) 
Otx 

Satisfaction of (19) requires that 

~ P  
2a[1 - 2(a 2 + S2n2)]~z ~ <<. o ( e )  (20) 

for the nontrivial solution P. 
When the neutral points (n, cxt) and (n, ~xz) defined in (6) are separated by a Finite interval, the coefficient of the 

derivative in (20) is f'mite and the inequality can be satisfied only if I '  does not depend on Xl. In that case, assuming that I '  = 

F(t2, xz), we obtain an equation for the approximation of the third order in ~, 

OHo , OHx OHo~ 09-H2 .q4 02H2 ~ 02110 

or-7 + 4(HO ,o + + - e f t  + - 
(21) 

/ 0 2  2 0 2 " 2  " 04 - 2  
+(W:]'-2 + S  h'7~) H 2 + 4 { , ~ + b '  04 " ~ H o - e - 2 K H o  = O, 

a t  o o~o aZoaZ 2 OzoOz2Oqo 21 

where the last term, written in operator form, represents terms carried over from the first approximation. The factor - otq 

appears in from of the amplitude I'  when the operator K acts on the first term in (10). The secular terms are underlined in Eq. 

(21) (those will be only some terms for the product HoHI). The requirement that they be zero for the restricted solution//2 leads 
to an equation for the first harmonic of F: 
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Here 

OF iB o r  at-~ + ~ - ~c ,~-~r  + a l r ? r  = o. 

B = 2a[1 - 2 ( a  2 + $2n2)] ;  A = 4 a 2 / [ 4 ( c ,  2 + S2n2)  a - ( a  2 + $4n2)]; 

a C  i = (Or 2 -}- S4n  2) _ (or 2 + $2n2)2;  t 2 = e2r ;  z 2 = e2X.  

(22) 

In the special case, when the neutral points (n, cq) and (n, c~z) specified in (6) are close to each other, the coefficient 
of the derivative in inequality (20) is small and the inequality can be satisfied even if F depends on x~. Clearly, the second term 

in (17) is now carried over to the equation of the next order in e. 
Assuming that F = F(t> xx), we obtain for the approximation of the third order in e the equation 

0 t t o  , OHo - -  0111 _ 011o~ 02115 _402112 _ 05H1 02110 
+11o-a---+111-x--)+-h-:~_2+5 ~ + 2 w----x-- + ---h-:~2 + Or2 1- 4 [H~ aZo aZo oz o o~o oxOOZl ox 1 

[ 05 , o2  02 ~2 4 04 S 5 04 2)Hi+ 
. o - 2  + + OzoOzl &o 

+ + + _-o. 

(23) 

where the last term represents terms carried over from the second approximation. When the operator K1 acts on the first term 

in (10), the amplitude F is transformed into the second term in Eq. (17). 

Or o r  _ o 2 r  
+ iBe-X O:~-"~ - acie-2r - P-~x21 + Alrl2r = 0. (24) 

Ot---~ 

Here P = 6o~ 2 + 2S2n 2 - 1 and the other coefficients are like those given in (22). 

After the transformation 

r = r 'exp (i/~zI), /J = e- IB/2P 

Eq. (24) becomes (the prime in F '  is omitted) 

_ 0 5 r  
or ~ c ~ - s r  _ e b - ~  + a lr l2r  = o, (25) 
Or5 

where ac ' i  = o~q + B2/4P. Equation (25) is the familiar Ginzburg-Landau equation. 
Equations (22) and (24) have the same spatially homogeneous solutions, which describe the nonlinear stage of the 

variation of the amplitude for perturbations that increase exponentially in the linear stage: 

e21r(t2)12 otci exp  [ 2 ~ e i ~ - 2 ( t 2  - t20)] 
= 1 + A exp [ 2 a ei e -5 (t2 - t2o)] " (26) 

Here t20 is a time constant that reflects tile arbitrary nature of  the assignment of the initial phase of  the perturbation. 

As t2--" co, we arrive at the steady-state value of the amplitude: 

ci r r i  = (~ cda)m.  (27) 

Steady-state spatially periodic solutions of  finite amplitude, therefore, have thus been obtained for Eqs. (2) in the form 

of an asymptotic series (I1). The first terms of the series are given by Eqs. (10) and (18) while the next t e rm/ /2  is easily 
determined from (22) (or, in the special case, from (24)) but is not given here. 
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Since the coefficient A for the perturbations under consideration is always greater than zero, clearly waves of finite 

amplitude are formed from linear perturbations for which q > 0 as a result of evolution, i.e., weakly nonlinear wave modes 

are formed in the region of linear instability of the trivial mode. In other words, stability is lost in a soft manner in the given 

case. 
We consider the stability of the solutions (27) to perturbations of "side frequencies" of  width ke j ( j  = 2 for Eq. (22), 

j = i for Eq. (24)). Here the perturbations are described in the space of ordinary variables x, t. From a comparison of Eqs. 

(22) and (24) it is clear that in the special case (when tx~ and tx2 are close to each other) the initial periodic solution is 

modulated more by the short-wave perturbations ( j  = 1) than in the general case ( j  = 2). 
When Eq. (22) is valid, we consider the solution (8 << 1) 

r = roo + 6rl(t2) exp (i kz2) + 6r2(t2) exp ( - i  kx2). (28) 

We substitute (28) into (22), confining the discussion to linear perturbations. Then, equating the coefficients for 

identical exponents, we obtain 

~9t2 ~a  + = 0, (29) A21 A22 ~a  

where 

~ 2  
All  = a c i e - 2 - B K ,  A12 = Ar~, A21 = Aroo, A21 = ac ie -2+BK,  

and the overbar denotes complex conjugation. By virtue of the linearity of the system (29) its solution has the form 

(30) 

(c2 and c3 are constants that are not determined within the framework of linear analysis). Substituting (30) into (29), we arrive 
at the problem for the characteristic value % From the requirement that a nontrivial solution (30) exist we have 

71,2 = - a c i e  - 2  4- (a2c~e -4  + B2k2)z/2. (31) 

It is clear from (30) that the condition that the solution (27) be stable against the perturbations (28) requires that -y < 
0. As follows from (31), this condition is not satisfied for every value of k. The solutions obtained thus are unstable against 

to "side frequency" perturbations with a modulation width of the order O (e2). 

In the special case, when Eq. (24) holds, investigation of the stability against perturbations of width Ice leads to the 
following relations for 7: 

71,2  = - P k  2 - ae~s -2  + (a2c~e -4  + B2k2)  1/2. 

Here, as in (31), the inequality "t~ < 0 is always valid, i.e., the perturbation corresponding to that characteristic value is stable. 

Unlike the case in (31), the second characteristic value 3'1 can now be smaller than zero, i.e., the solution (27) in this case 
is more stable against perturbations with certain wave numbers. It is easy to understand that "shorter-wave" perturbations, for 
which 

k 2 >1 k2. = (B 2 - 2Pac i ) e -2 /p  2. (32) 

Clearly, Eq. (32) is satisfied if (B 2 - 2Pcxcl) > 0. Then for perturbations with small k we have 3'2 > 0. 

Analysis shows that in this special case a critical k. exists for all wave numbers from the interval of instability of the 
critical solution cx 2 < tx _< ct i. It is a minimum for a solution with a wave number in the middle of the region of linear 

instability (tx = (ix t + cx2)/2) and increases monotonically as o~ approaches the limits of the region of instability. 
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In summary, it has been demonstrated that Eq. (2) has spatially periodic steady-state solutions and that in both the 

general and special cases those solutions are unstable against "side frequency" perturbations with fairly small k. In other words, 
a periodic wave with wave number tx is unstable against perturbations with similar wave numbers tx + ke j. In the special case, 

when the solution (27) becomes stable against perturbations with [ k [ _> I k. I, more complex wave modes that can be obtained 
on the basis of Eq. (24) can be expected to appear. Such more complex wave modes can be expected to appear in the general 

case as well, but evidently at values of k when Eq. (22) is no longer applicable and a more complex formulation must be 
considered. 
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